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1 Problems

1.1 Problem 1

Use induction to show that 1 + 2 + . . . + n = n(n+1)
2

for all positive integers
n.

1.2 Problem 2

Use induction to prove that 5n−1 is divisible by 4 for all non-negative integers
n.

1.3 Problem 3

Define a sequence with a1 = 1 and an =
√
3an−1 + 8. Prove that an < 5 for

all positive integers n.

1.4 Problem 4

(Duplicate, this problem is on the slides as well.)

Prove that for all positive integers n, x, y with x, y ≤ 2n, it is possible to tile
a 2n × 2n grid with L-shaped blocks consisting of 3 unit squares, such that
only the cell at position (x, y) is not covered.

For example, when n = 2, x = 2, y = 3, the following tiling can be used.
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1.5 Problem 5

Prove that in any tournament graph, there exists a Hamiltonian path.

Definitions

A tournament graph is a directed graph containing N nodes and N(N−1)
2

edges, for some positive integer N , such that between every pair of distinct
nodes, there is exactly one directed edge, which might be directed in either
of the two possible orientations.

A directed graph G = (V,E), consists of a set of nodes (V ) and a set of
edges (E). For simplicity, assume the nodes are numbered with the positive
integers 1, 2, . . . , N . Each edge is an ordered pair of nodes. For an edge
(u, v), it is said that it is directed from u to v.

A Hamiltonian path in a graph is a path that visits each node exactly once.

A path P of length k in a graph is a list of nodes P1, P2, . . . , Pk such that
there is an edge from each node in the path to the next. I.e. the graph
contains the edge (Pi, Pi+1) for all 1 ≤ i ≤ k − 1.

1 2

3 4

Figure 1: An example of a tournament graph of size 4 with a Hamiltonian
path highlighted.
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1.6 Problem 6

Prove that for each positive integer, there is at most one way of writing it as
the sum of distinct, non-consecutive Fibonacci numbers.

The Fibonacci sequence is defined as F (1) = 1, F (2) = 2, F (n) = F (n− 1)+
F (n− 2).

Formally, prove that for any positive integer N , there exists at most one set
S = {S1, S2, . . . , Sk} such that Si ∈ Z+,

∑k
i=1 F (Si) = N and |Si − Sj| > 1

for all 1 ≤ i < j ≤ k.

2 Solutions

2.1 Solution for Problem 1

For n = 1, 1 = 1(2)
2
.

For n ≥ 2, assume 1 + 2 + . . .+ n− 1 = (n−1)·n
2

.

Then,

1 + 2 + . . .+ n− 1 =
(n− 1) · n

2

1 + 2 + . . .+ n− 1 + n =
n(n− 1)

2
+ n

1 + 2 + . . .+ n =
n(n− 1) + 2n

2

1 + 2 + . . .+ n =
n(n+ 1)

2

This completes the induction.

2.2 Solution for Problem 2

50 − 1 = 0 is divisible by 4.

For n ≥ 1, assume that 5n−1− 1 is divisible by 4. Another way of saying this
is that there exists an integer k such that 5n−1 − 1 = 4k.
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Next, we rearrange:

5n−1 − 1 = 4k

5n − 5 = 20k

5n − 1 = 20k + 4

5n − 1 = 4(5k + 1)

Since 5k + 1 is an integer, 5n−1 − 1 being divisible by 4 implies that 5n − 1
is also divisible by 4, completing the induction.

2.3 Solution for Problem 3

We can use induction to show that an < 5. a1 = 1 < 5. For n ≥ 2, assume
that an−1 < 5.

an−1 < 5

3an−1 < 15

3an−1 + 8 < 23√
3an−1 + 8 <

√
23

an <
√
23 < 5

This completes the induction, showing that an < 5.

2.4 Solution for Problem 4

Assume that it is possible to construct a tiling that covers all but any given
cell for a 2n × 2n grid.

This is obviously true for n = 1 since you can use the 4 rotations of the block
to leave whichever square you want uncovered.
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We will prove that if it is possible for n − 1, it is also possible for n. Find
which quadrant the cell that should be empty is on, and tile that quadrant
so that only that cell is uncovered. This is possible since it is the n − 1
case. For all the other quadrants, tile them such that only the corners of the
quadrants that are in the middle of the larger square are not covered, This is
also possible since the quadrants have size 2n−1 × 2n−1. Cover the remaining
3 cells in the center of the larger square with a single L-shaped block. Now
all cells but the required one are covered, completing the induction.

2.5 Solution for Problem 5

We will use proof by induction to show that there is a Hamiltonian path on
a tournament graph of size N .

The N = 1 case is trivially true, the path consists of only the one node that
exists.

For all N ≥ 2, assume there exists a Hamiltonian path in every tournament
graph of size N − 1.

Pick any node u in the graph, and construct a Hamiltonian path P on the
remaining N − 1 nodes.

If the graph contains the edge (u, P1), u can be added to the start of P to
construct the path for the full graph.

If the graph contains the edge (PN−1, u), u can be added to the end of P to
construct the new path.

The only remaining case is when the graph has edges (P1, u) and (u, PN−1).
In this case, find the smallest index i such that there is an edge (u, Pi). It is
guaranteed that such an index exists since the graph has the edge (u, PN−1).
It is guaranteed that i > 0 since the graph does not have the edge (u, P1). It
is guaranteed that the graph has the edge (Pi−1, u), since the graph contains
every edge in one of the two possible orientations, and if it was in the other
orientation, we would’ve chosen index i − 1, not index i. Thus, we can add
node u to the path between indices i − 1 and i, forming a new valid path,
since the graph has edges (Pi−1, u) and (u, Pi).
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u

Figure 2: An example of the last case of the inductive step with i = 3.

This completes the induction, proving that if there is a Hamiltonian path in
every tournament graph of size N − 1, there is also a Hamiltonian path in
every tournament graph of size N .

Since we already proved the N = 1 case, we conclude that there is a Hamil-
tonian path in every tournament graph.

2.6 Solution for Problem 6

Let s(n) be the maximum sum you can obtain using the first n Fibonacci
numbers if you can only use a subset of them that doesn’t contain consecutive
Fibonacci numbers. s(0) = 0. s(1) = 1. s(2) = 2. s(n) = F (n) + s(n − 2)
for n ≥ 2.

We will first show that s(n− 1) = F (n)− 1 for n ≥ 1. This is trivially true
for n = 1 and n = 2. For n ≥ 3, assume the statement is true for n− 2.

s(n− 1) = F (n− 1) + s(n− 3)

s(n− 1) = F (n− 1) + F (n− 2)− 1

s(n− 1) = F (n)− 1

This completes the induction.

Next, we use induction to show that for any non-negative integer x, there is at
most one way of writing it as the sum of distinct, non-consecutive Fibonacci
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numbers. There is obviously only one subset of the Fibonacci numbers that
sums to 0, the empty set, so this is true for x = 0.

For larger x, assume we have already proven that there is at most one valid
sum for all integers less than x. Note that the largest Fibonacci number F (n)
less than or equal to x must be included in the sum for x. This is because if
we didn’t include F (n), the largest sum we could make is s(n−1) = F (n)−1
which is strictly less than x. This means that to construct the sum for x,
we must include F (n) and the sum for x − F (n), which we already know is
unique since x−F (n) < x. This completes the induction, proving that there
is at most one valid sum for x.

Note that this does not guarantee that there always exists at least one way
of writing a sum for each x, since it’s possible that the sum for x − F (n)
requires F (n− 1), making the sum invalid.
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